Tensile mechanical properties of collagen type I and its enzymatic crosslinks.
نویسندگان
چکیده
Collagen type I crosslink type and prevalence can be influenced by age, tissue type, and health; however, the role that crosslink chemical structure plays in mechanical behavior is not clear. Molecular dynamics simulations of ~65-nm-long microfibril units were used to predict how difunctional (deH-HLNL and HLKNL) and trifunctional (HHL and PYD) crosslinks respond to mechanical deformation. Low- and high-strain stress-strain regions were observed, corresponding to crosslink alignment. The high-strain elastic moduli were 37.7, 37.9, 39.9, and 42.4GPa for the HLKNL, deH-HLNL, HHL, and PYD-crosslinked models, respectively. Bond dissociation analysis suggests that PYD is more brittle than HHL, with deH-HLNL and HLKNL being similarly ductile. These results agree with the tissues in which these crosslinks are found (e.g., deH-HLNL/HLKNL in developing tissues, HHL in mature skin, and PYD in mature bone). Chemical structure-function relationships identified for these crosslinks can aid the development of larger-scale models of collagenous tissues and materials.
منابع مشابه
Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage.
OBJECTIVE The focus of tissue engineering of neocartilage has traditionally been on enhancing extracellular matrix and thus biomechanical properties. Emphasis has been placed on the enhancement of collagen type and quantity, and, concomitantly, tensile properties. The objective of this study was to improve crosslinking of the collagen network by testing the hypothesis that hypoxia could promote...
متن کاملMechanical recruitment of N- and C-crosslinks in collagen type I.
Collagen type I is an extracellular matrix protein found in connective tissues such as tendon, ligament, bone, skin, and the cornea of the eyes, where it functions to provide tensile strength; it also serves as a scaffold for cells and other extracellular matrix components. A single collagen type I molecule is composed of three amino acid chains that form a triple helix for most of the molecule...
متن کاملThe Phosphate/Amide I ratio is Reduced by in vitro Glycation and may Correlate with Fracture Toughness
Introduction: Advanced glycation end products (AGEs) form when reducing sugars react with proteins. In bone AGEs can form in type I collagen which results in non-enzymatically derived crosslinks. While enzymatic crosslinks play an important role in strengthening the collagen matrix, non-enzymatic crosslinks are believed to reduce toughness. AGEs accumulate in bone over time and play an importan...
متن کاملElastic and viscoelastic properties of a type I collagen fiber.
A new mathematical model is presented to describe the elastic and viscoelastic properties of a single collagen fiber. The model is formulated by accounting for the mechanical contribution of the collagen fiber's main constituents: the microfibrils, the interfibrillar matrix and crosslinks. The collagen fiber is modeled as a linear elastic spring, which represents the mechanical contribution of ...
متن کاملInfluence of Crosslink Density and Stiffness on Mechanical Properties of Type I Collagen Gel
The mechanical properties of type I collagen gel vary due to different polymerization parameters. In this work, the role of crosslinks in terms of density and stiffness on the macroscopic behavior of collagen gel were investigated through computational modeling. The collagen fiber network was developed in a representative volume element, which used the inter-fiber spacing to regulate the crossl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical chemistry
دوره 214-215 شماره
صفحات -
تاریخ انتشار 2016